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RESUME

Nous établissons un résultat de comparaison de deux versions naturelles de I'invariant
n équivariant par une formule locale. En combinant ce résultat avec une formule de
localisation en K-théorie différentielle, nous obtenons une formule de localisation pour
I'invariant n équivariant. Une étape importante est la construction d'une structure de
pré-i-anneau sur la K-théorie différentielle.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction

In this note, we give various refinements of the fixed-point formulas in equivariant K-theory of Atiyah-Segal at the level
of certain global spectral invariants: the equivariant n-invariants.

More precisely, if Y is a compact Riemannian manifold equipped with the action of a compact Lie group, and if D is a
Dirac operator on Y, Atiyah and Segal [4] gave an expression for the equivariant index of D in terms of the K-theory of the
fixed-point set.

On the other hand, n-invariants of Dirac operators are global spectral invariants of odd dimensional compact mani-
folds, which appear in the index theorem of Atiyah-Patodi-Singer (APS) for manifolds with boundary [3]. In the equivariant
version [18] of the theorem of APS, the contribution of the boundary is given by the equivariant n-invariant of the bound-
ary.
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In this note, when the group is just S!, we establish an analogue of the Atiyah-Segal localization formula for such
equivariant n-invariants. More precisely, in Theorem 3.3, we show that as functions on S!, up to a rational function with
integral coefficients, the equivariant n-invariant coincides with the equivariant n-invariant of the fixed-point set.

To prove our result, we proceed in two steps. In a first step, of independent interest, we extend to equivariant
n-invariants what was done by Bismut-Goette for equivariant holomorphic torsion [13]. In the same way as fixed-point
formulas have two equivalent versions, the Lefschetz fixed-point formulas and Kirillov-like formulas of Berline-Vergne [6],
the same is true for equivariant n-invariants. Our first step consists in showing that the difference between the two ver-
sions is given by an explicit local formula, involving natural Chern-Simons currents. The techniques used in this first step
are inspired by Bismut-Goette [13].

In a second step, by developing methods of differential K-theory, we prove our final formula, by first showing that
it holds for any element in the complement of a finite set, modulo the values at this element of rational functions with
integral coefficients; and we use the first step to finally obtain our final result over S'.

Our results on equivariant n-invariants should be compared with the results of Kéhler-Roessler [24], [25] for equivariant
holomorphic torsion on arithmetic varieties.

Note that the holomorphic analytic torsion (and its families version: the torsion forms of Bismut-Kéhler [15]) is the ana-
lytic counterpart to the direct image in Arakelov geometry [36], whose foundation was developed by Gillet-Soulé and Bismut
in the 1980s. The n-invariant (and its families version: the n-forms of Bismut-Cheeger [11]) is now the analytic counterpart
to the direct image in differential K-theory, developed by Hopkins-Singer [23], Simons-Sullivan [35], Bunke-Schick [17],
Freed-Lott [19], etc.

In the arithmetic context, Kéhler and Roessler’s results [24, Theorem 4.4] give a relation of the equivariant holomorphic
torsion of a complex manifold to the analytic torsion of the fixed-point set for n-th roots of unity. In [25, Lemma 2.3], they
discussed in detail this problem and made a conjecture for complex manifolds [25, Conjecture, p. 82]. Kohler-Roessler [25]
did not use the comparison formula of Bismut-Goette [13], but they used instead their arithmetic equivariant Riemann-Roch
formula. For more applications of the arithmetic equivariant Riemann-Roch formula, see Maillot-Roessler [32] and later
references.

Details will be developed in [28,29].

Notation: For K =R or C, we denote by Q°(X,K) the space of smooth K-valued differential forms on a manifold X
and its subspaces of even/odd degree forms by 2¢Ven/°dd(x K). Let d be the exterior differential, then the image of d is the
space of exact forms, Imd.

1. Comparison formula for equivariant 5-invariants

Let G be a compact Lie group with Lie algebra g. Let Y be an odd-dimensional compact oriented G-manifold. Let g7
be a G-invariant metric on TY. Assume that Y has a G-equivariant spin® structure [26, Appendix D], with the associated
G-equivariant Hermitian line bundle (L, h%). We denote by S(TY, L) the corresponding spinor bundle on Y. Let (E, hf) be
a G-equivariant Hermitian vector bundle on Y. Let VT be the Levi-Civita connection on (TY,g"Y). Let VI and VE be
G-invariant Hermitian connections on (L, ht) and (E, hE). Put

TY =(TY, g™, v"), L=(,n", V", E=(En" VF). (1
We call E a G-equivariant geometric triple. Let VSY®E be the connection on S(TY, L) ® E induced by V7Y, VI and VE.
Let c(-) be the Clifford action of TY on S(TY, L). The Dirac operator is defined by
DY ®E= cle) Ve ®E :6™(Y, STY. ) ® E) — €=(Y, S(TY, L) ® E). )
i

Here {e;} is a locally orthonormal frame of TY. Let dvy(x) be the Riemannian volume form of (Y, g"¥). Then DY ® E is a
first-order self-adjoint elliptic operator on Y with respect to the Hermitian product

(s, sy = /(s, shYx)dvy(x), fors,s’ e €°(Y,S(TY,L) ® E). (3)
Y
Its kernel Ker(DY Q E) is a finite-dimensional G-complex vector space. Let exp(—u(DY @ E)?), u > 0, be the heat semi-group
of (DY ® E)%.
For g € G, the equivariant (reduced) n-invariant associated with TY, L, E is defined by [18],

+00

_ du 1

fg(TY,LE)= / Tr[g(DY ® E) exp(—u(D' ® E>Z>]ﬁ + 5 Trlkerpver) (81 € C- (4)
0

When g = e, the identity element of G, 7g(TY,L, E) is just the reduced n-invariant 7(TY,L, E). The convergence of the
integral at u =0 in (4) is nontrivial (see, e.g., [12, Theorem 2.6], [18], [37, Theorem 2.1]).
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The G-action on (Y, E) is given by (g.5)(x) = g(s(g~'x)) for g€ G, s € €>°(Y, E). For K e g, let K" (x) = 5 |,_ e -x
be the induced vector field on Y, and Lk be the corresponding Lie derivative given by Lgs = %L:o (e‘”(.s) for s e

%> (Y, E). The associated moment maps are defined by [5, Definition 7.5]
mF(K) :=Vgy — Lx|g € €(Y,End(E)),

5
m'Y (K) ==V} — Lklry = VIYKY € €% (Y, End(TY)). )

For g € G, let Y& be the fixed-point set of g. Observe that m’Y (K)|ye preserves the decomposition of real vector bundles
on Y&

TYlys = TYE @ ®o-0<xN(0), (6)

where dg|nw = —Id and for each 6, 0 <6 <, N(0) is the underlying real vector bundle of a complex vector bundle over
Y¢ on which dg acts by multiplication by el?. Let mTY* (K) and mN® (K) be the restrictions of mTY (K)|y¢ to TYE and N(9).
Since V'Y is G-invariant, it preserves the splitting (6). Let VI¥* and VN® be the corresponding induced connections on
TY# and N(6), with curvatures RT'* and RN®. Let RE be the curvature of VE. Let RTY*, RY® and RE be the equivariant
curvatures of TYE, N(9), and E defined by

REYE = RTY® —2inm™*(k), RR® = RN® — 2immM @ (k),

(7
RE = RE — 2inmE (K).

Let Rf( be the corresponding equivariant curvature on L as in (7). We assume that g acts on L|ye by multiplication by e’1,
0<6; <2m.
For g € G, let Z(g) C G be the centralizer of g, and let 3(g) be its Lie algebra. For K € 3(g), |K| small enough, set

—~ LRTYg
Agk(TY,VIYy:=det'? [ 2K ____
sinh(ﬁRIEYg)
. -1
x I1 <i%d'mN(9)det”2<1 gexv(1 Nw)))) € Q* (Y4, 0),
0<6<m (8)

chg x(E): _Tr[gexp< RE)]EQ (Y8, 0),

i
chg k(L) —exp( §|yg+iel)eﬂ'<yg,«:>,
Tdg x (VTY, V5 1 = Ag 1 (TY, V1) chg  (L/2).

If K =0, then Ag k(TY,VTY), chg k(E), ¢ 1g,((L‘/z) and Tdg x(VTY, VD) are just the equivariant characteristic forms
Ag(TY,VTY), chg(E), chg(L/2) and Tdg(V'Y, V). When g =, we will write ch(E) instead of chg(E).
Let d be the exterior differential operator. Set

dg =d — 2imigy, (9)

where i. is the interior product on forms. For K € 3(g), /Ag,K(TY, vy, chg x(E) and chg,K(L/z) are di-closed [5, Theorem
7.7].

Let ¥ € T*Y be the 1-form which is dual to K¥ by the metric g7". For g € G, K € 3(g) and |K| small enough, by [22,
Proposition 2.2], the following integral

+00
s vdgd
Mer (1Y LE) == [ [ 3€ exp (5 ) Ty (V7Y ) chg i (E) { dv (10)
’ 2in 2in ’ ’
o lye

is well-defined.

Let us explain first how M, x appears naturally in the localization formula of the equivariant cohomology from the local
index theory point of view. Note that the Berline-Vergne localization formula [6] says that, if « € Q*(Y, C), dga =0, then

dim NVK/Y

[«=]
det!/2 < YK/Y/(Z n))

o, (11)
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N
where YX is the zero set of K¥, Ny« y is the normal bundle of YX in Y and R,;"/"

as in (7). In [9, (1.10)], Bismut proved that, for any v > 0,

/a:fexp(dklfh()a, (12)
2vin
y

Y

is the associated equivariant curvatures

by establishing the following equation

d x dg vk 1d l?[( x dg g (13)
v TP\ 2vin ) ) = 702 2 P\ 2vin ) )

to show the derivative of the right-hand side of (12) vanishes, then obtained (12) by making v — +o00. As v — 0, in [9,
(1.14)-(1.21)], he showed that the right-hand side of (12) converges to the right-hand side of (11). From this discussion, the
current on Y [10, Theorem 1.8],

o0 o
44 d[(ﬁ[( dv e VdKﬂK
=— [ —ex —= | —exp| ——— ) dv, 14
Uk 2vin p( 2vim /) v 2im P 2im (14)
0 0
is such that
—1ldimN K
i 2 YKy s
dgQx =1~ N L (15)
det!/2 <R P /(2i7t))
Set
1
DK:DY®E—|—ZC(KY). (16)

In the following definition of the infinitesimal n-invariant, the operator »/uDY ® E + C(K ) was introduced by Bismut [7]

in his heat kernel proof of the Kirillov formula for the equivariant index. As observed by Blsmut [8, §1d), §3b)] (cf. also [5,
§10.7]), its square plus Lgv is the square of the Bismut superconnection for a fibration with compact structure group, by
replacing KY by the curvature of the fibration.

Theorem 1.1. For g € G, there exists 8 > 0 such that, for K € 3(g), |K| < B, the integral

+00

_ 1

Mgk (TY, L E) = / Te[gD exp (~unk, - £6)] s/m g Therovenlge] € C (17)
0

is well-defined.
For Kg € 3(g), there exists 8 > 0 such that, fort € R, 0 < |t| < B, we have

Ng.tko(TY, L, E) =Ngettg (IY, L, E) + Mg iy (TY, L, E). (18)

Furthermore, for Ko € 3(g), fig.tko (TY, L, E) and t @™ Y¥+D/2 Afy o (TY, L, E) are analytic functions of t, fort € R, |t| < B.

In the sequel, 7y x(TY,L,E) will be called the equivariant infinitesimal (reduced) n-invariant and we denote
ik (TY,L.E) = flex (TY,L E).

Since 7g ik, (TY, L, E) is an analytic function of t, when t — 0, the singularity of ﬁgemo (TY,L,E) is the same as that of
—Mg ko (TY,L,E). In [21, Theorem 0.5], Goette obtained (18) as an equality of formal Laurent series in t when g =e and
KY does not vanish.

Theorem 1.1 is the analogue of the comparison formulas for the holomorphic torsions [13, Theorem 5.1] and for the
de Rham torsions [14, Theorem 5.1]. The analytic tools in our proof of Theorem 1.1 are inspired by [13], with necessary
modifications.

Remark 1.2. In [28], we establish also the family extension of Theorem 1.1 for a fibration 77 : W — B of compact manifolds
with fiber Y by replacing the n-invariants by the n-forms of Bismut-Cheeger [11, Definitions 4.33, 4.93].

Remark 1.3. Recall that the Bismut superconnection [8, Definition 3.2] for a general fibration with fiber Y is the sum of
three parts: the Dirac operator along the fiber Y, a unitary connection VE-¥ on the infinite-dimensional vector bundle of
smooth sections of S(TY, L) ® E over Y, and —%C(TH); here TH is the curvature of the fibration.
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Let P — B be a G-principal bundle. Then the curvature Q of P is a g-valued 2-form on B. For TY,L,E in (1), we get
naturally a fibration P x¢ Y — B. Let j(TY, L, E) be the associated n-forms of Bismut-Cheeger. For this fibration, by Bismut
[8, §1d), §3b)], the term c(TH) in the Bismut superconnection is c(R2), and (VE-")2 = Lq, thus we get [21, Lemma 1.14],

~ 1 i _
n(ryY,L.E)+ iTrlKer(Dv@,E)[ehQ] = nﬁQ(TY,L,E)- (19)

Remark 1.4. Now assume temporarily that Y is the boundary of a G-equivariant spin® Riemannian manifold Z with the
spinor bundle Sz =S5 @ S, which has product structure near Y. We also assume that Ez is a G-equivariant Hermitian
vector bundle with connection such that near Y it is the pull-back of E.

Let D7 be the associated Dirac operator on S; ® E; over Z. Then the index of D} = DZ|<€°C(Z,S;®EZ) with respect to
the Atiyah-Patodi-Singer (APS) boundary condition is a virtual representation of G. For g € G, its equivariant APS index
IndApsyg(D}—) can be computed by Donnelly’s theorem [18],

Indaps ¢ (D) = / Tdg(V'%, V) chg(Ez) — iig(IY. L E). (20)
78

By combining (15), (18) and (20), for any K € g, there exists 8 > 0 such that, for any —g8 <t < 8, we have

L E). (21)

Indpps ek (D) = / Tdek (VT4, V) cheg (Ez) — ek (TY
zZ

2. Pre-\A-ring structure in differential K -theory

Let Y be a compact manifold. Let 7 : (y,5) € Y x R — y € Y be the obvious projection. If o = g + ds A a7 with
g, a1 € A*(T*Y), set {a}9 := ay.
Let E be a complex vector bundle on Y. Let h™ £ be a metric on 7*E over Y x R and let V7 "E be a Hermitian connection
on (7*E, h™ E) such that
(E W Ely sy, V7 Ely i) = (E,hE, VE) = Ej for j=0,1. (22)

The Chern-Simons class ch( Eg, E1) € Q°9(y, R)/Imd is defined by

1
ch(Eg, E1) =/{ch(n_*E)}d5ds € Q4(y R)/Imd. (23)
0

Then, we have

dch(Eo, E1) = ch(E1) — ch(Eo). (24)
Note that the Chern-Simons class depends only on V].E for j=0,1 (see [31, Theorem B.5.4]).
Definition 2.1. A cycle for the differential K-theory of Y is a pair (E, ¢) where E is a geometric triple (without the group

action) and ¢ is an element in ©°94(Y, R)/Imd. Two cycles (E1,¢1) and (E3, ¢7) are equivalent if there exist a geometric
triple E3 = (E3, hEs vE3) and a complex vector bundle isomorphism @ : E1 @ E3 — E» @ E3 such that

ch(E1 ® E3, * (E2 @ E3)) =2 — 6. (25)

We define the differential K-group KO(Y) as the Grothendieck group of equivalent classes of cycles.

For any [E, ¢, [ F, ¥] € K°(Y), set

[E.@]JULE, ¢ ]=[E®F,ch(E) A¥ +¢ Ach(E) —dp Ay]. (26)

Then i?o(Y) ={[E-E1,¢—¢1]:=[E, ¢l —[E1,¢1]:(E, ), (E1, ¢1) are cycles as above} and RO(Y) is an abelian group. We
also verify directly that the product (26) is well-defined, commutative and associative. Thus (fO(Y), +,U) is a commutative
ring with unit 1:=[C, 0]. Here C is the trivial line bundle over Y with the trivial metric and connection.

For a commutative ring R with identity, a pre-A-ring structure is defined by a countable set of maps A" : R — R with
n € N such that, for all x, y € R,
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n

V=1, F@=x Ax+y) =) Mary). (27)
j=0
Let
@)= A0, @ =Yyt =1 . (28)
n>0 j=0

Consider the vector space (cf. [20, §7.3.1])
(YY) :=Z%"Y,R)&® (QOdd(Y, R)/Im d) , (29)

where Z€Ven(Y, R) is the set of even degree real closed forms on Y. Let [-]oqq be the component of I'(Y) in °4d(y, R)/Imd.
We define a product operation on I'(Y) by the formula

(@1, $1) * (W2, $2) := (W1 A W2, W1 A+ P1 Awy — dp1 A ). (30)
Set Q~1(-) = {0}. Given k € N, we define the Adams operations W¥ : I'(Y) — I'(Y) (cf. [20, §7.3.1], [33]) by

W, B) = Ko, K'B),  for (@, B) € Z2(Y,R) & (%1 (Y, R)/Imd). (31)
For any x e I'(Y), put

X \k—=1 gk k
S 000t = exp (Z O St ) | (32)

n>0 k=1

where the multiplication in (32) is defined in (30).
Let AXE be the k-th exterior power of E with the induced metric and connection. Let ch(E) € Z¢¢"(Y, R) be the Chern
character form.

Theorem 2.2. The differential K-group R\O(Y) has a pre-A-ring structure defined by

A(E, ¢1) = [ AXE, [A*(ch(E), $)1odd]- (33)

Assume now that Y is connected.
Set AK(E) = AKE. Let rkE be the rank of the complex vector bundle E. Let rkE be the rkE-dimensional trivial complex
vector bundle with trivial metric and connection. Then, by (28),

rkE

Ve(E—1KE) = »(E)(A =) F =Y " A'E-t'(1 —)™F ", (34)
i=0
Thus,
K ki (TKE—1Y ; . .
o(—1 A'E fo<k kE
VK(E — tkE) = Yico(=1) <k—i >_ if 0 < k < rkE; (35)

0, if k > rkE.

In particular, y*(E — rkE) is a finite-dimensional virtual complex vector bundle with the induced metric and connection.
The following theorem is part of the differential K-theory version of [1, Proposition 3.1.5], the locally nilpotent property of
the y-filtration in the usual topological K-group of Y.

Theorem 2.3. There exists Ny ;m > 0 (depending only on r, m) such that for any geometric triple E on Y withr = rkE, m = dimY and
(ny,---,ny;) € N such that Z{ﬂ i -nj > Np.m, we have

[1(/ (e - ne.0p)" = [l_[ (vice— )" 0} =0eRo). (36)

i=1 i=1
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3. Localization formula for n-invariants

We use the notation of Section 1 and we assume that G = S'. For g € S!, we define cNhg(~ -+) as in (23) by replacing ch
by chg and choosing a S'-invariant couple h™ £, v7'E,

Definition 3.1. For g € S', a cycle for the g-equivariant differential K-theory of Y is a pair (E, ¢), where E is an equivariant
geometric triple over Y, and ¢ is an element in £°44(Y€, C)/Imd. Two cycles (E1,¢1) and (E;, ¢7) are equivalent if there
exist an S'-equivariant geometric triple E3 = (E3,hf3, VE3) and an S!-equivariant complex vector bundle isomorphism
®:E{®E3 — Ey @ E3 such that

chg (E1 @ E3, @ (E2 ® E3)) = ¢2 — 1. (37)

The g-equivariant differential K-group Eg(Y) is the Grothendieck group of equivalent classes of cycles.

For any [E. ¢, [F.y¥]eK)(Y), set

[E.¢]ULE, ¢]=[E®F,chg(E) AY + @ Achg(F) —dp Al (38)
Again the product (38) is well-defined, commutative, and associative. Thus (Rgm, +,U) is a commutative ring with unit
1:=[C,0].
In the following, we will denote by 'E the corresponding geometric triple when forgetting the group action.
Let YS' be the fixed-point set of the circle action on Y. Then each connected component Ygl, o €8, of Ysl, is a compact

manifold. Unless stated otherwise, we assume that YS' # (. Let Ny be the normal bundle of Ygl in Y. Then on Ygl, we
have the splitting

Noz :®Na,v, (39)

v>0

and g € S! acts on the complex vector bundle N, , by multiplication by g". For any « € B, Ygl also has an equivariant
spin® structure with associated equivariant line bundle Ly = L|Y51 ® (detNy)~! as wz(TYgl) =c1(Ly) mod(2) (cf. [30,
(1.47)]). Set

Ta,v =TKNg y. (40)

Let Py 4+ (/ N;’V) be the finite-dimensional Hermitian vector bundles on Ygl with metrics and connections such that

T Ta.v
ey V! & . n;
Py + </N;,v) — Py — (/N:;,v) =k Z(—I)Zizl n; (ﬁ—;gl nl‘) l_[ (Vl (/N;,v - I'l(/N:;,v )) > (41)
- i=1"1" =1
where ¥ >~ is a sum over (ny,---,ny,,) € Nev, :il” i-nj=k. Let mg =dim YOS[I. Set
No :=supNr, , me, With A, , m, asinTheorem 2.3. (42)
o,V

By Theorem 2.3, we know that for any k > N,

[Pk,+ (’N(’;’V) — Py (’Né,v) , 0] —0eRYSh. (43)
From (28), (35) and (41), formally, we have

Tov

-1
At (’N;,V )_1 =(1+t) Ty (1 D% (’N;;,v — kN, ) (a4 r)—")
i=1

Ta,v

o0 .
=140 [ 14 Z(—l)f(z yi (’N;’v — kN, ) t(1+ t)*f)J
j=1 i=1

=(141) "o (1 + it"(l 1ok (Pk,Jr (M) — Py (M))) . (44)

k=1
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Let A C S! be the finite set defined by
—{gest:yS' 2y8 st (45)

Let R(S') be the representation ring of S!. Let ﬁg(Y)I(g) be the localization of RE(Y) at the prime ideal I1(g) of R(S),

which consists of all characters of S! vanishing at g.
For g e S"\A, N e N, from (44), we define

— a,v N p—
)L_g—v </N;’V)./\/] = (g\/giﬁ (1 + Z % (Pk,-‘r </N;,v> - Pk,— (/N(T(,V>>) ’
k=1

B (46)
AaNSY = ) g?#ox_g (M),
From (43)-(46), for g € ST\ A, we see that for any N', NV > N,
(1R 0] =[ A1 V)34 0] e REVS Do), (47)
and
[x_1(N;), o] U [A_l(N;);},o] —1eRAYSHie- (48)

Thus we have the following theorem, which is the differential K-theory version of Atiyah-Segal’s result [4, Lemma 2.7] in
usual topological K-theory. A version for arithmetic K-group was obtained in [24, Lemma 4.5].

Theorem 3.2. For g € ST\ A, [A,l (N%), O] is invertible in Eg(Yg] )i(g) and, for any N > No, we have:
* -1 xy—1 70,y S!
A-1(Ng), 0|  =|2A-1(Ng)r-, 0| € Kg(Yg i) (49)

For f € Z[x,x 1], there exists a finite dimensional representation My of S1 such that its character XM, (8) is f(g) for
any g e S'. Let My be the vector bundle Y x My on Y with trivial metric and connection and the induced circle action. By
identifying f(g) - F with My ® F for triple F, there exist equivariant geometric triples (o a7+ and pg a7~ ON Ygl such
that o

AN =F@ 7 (ot — pan,—) withF(@)= [] (g" -1« (50)
Virg,v#0

For g € ST\ A, we define
_ 1 _
g (T3 Lo A1 (NDR @51 )
_ — 1
= F@ " [y (TY5 L panr @ Elygr ) = g (T3 L o= @ Elyr ) |- (51)
Note that from (46) and (50),

1
tan .+ =D bk s € KOYS) (52)
k>0

and S acts fiberwise on &, with weight k. If S' acts on L by sending g € S! to g (I, € Z) on Y5', then by [30, p. 139]
and (40),

D Vray+le=0 mod(2). (53)

v

By (52) and (53), for g € S, we have:
_ 1 _ 1
Mg (T3 L pavr ® Elygr ) = g (TYE' Lo o ® Bl )

_1 1 _ 1 _ 1
—g T vrartile 3 ghty [,,(Tyg Lo Euger ®Ev) =i (TYS ,L_a,ga,,<,_®ﬁ)]. (54)

k>0,v

Here Ey is the weight v part of E| ys! for the S'-action.
The main result of [29] is a locahzatlon formula for equivariant (reduced) n-invariants.
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Theorem 3.3. For any N, N” e N and N > N > Ny, and for E = (E, hE, VE) on Y, the functions on ST\ A,

— 1 _ _ 1 _
P (8) =g (TYS Lo At (NG R @ El o1 ) = lg (TYS  Las i1 (N @ El o ) (55)

and

_ _ 1 _
Qur(8) =g (TY. LE) = > g (TY&  Las At (NG R ® El o), (56)
o
are restrictions of rational functions on S with integral coefficients that do not have poles on S'\ A.

Remark34.1f YS' =0, A={geS!':YE £0), fig(TY,L,E) as a function on S'\A is the restriction of a rational function
on S! with integral coefficients and it has no poles on S'\A.

4. Localization in differential K -theory and a proof of Theorem 3.3

Let K‘S)1 (Y), K;] (Y) be the S'-equivariant K-group, K'-group of Y, respectively. By [34, Definitions 2.7 and 2.8], we have
the exact sequence
0— K& (Y) 5 K9 (Y x shh Ko (Y) 0, (57)
where Slisa copy of S! with trivial S!-action and there exists b € S1 such that the map i is givenbyi:Y>y— (y,b) €
Y x S1. By (57), Kgl (Y) is a R(S1)-module.
For y € K;, (Y), from (57), we can represent ¢(y) as W — U, here U is a trivial S!-equivariant vector bundle on Y x S!
associated with a finite-dimensional representation M of S!, and

W =Y x[0,1] x M/ ~F, (58)

where we identify S1 with R/Z, F € € (Y, Aut(M)) is S!-equivariant, and ~F is the gluing map: (y, 1,m) ~ (y, 0, F(y)m)
for y € Y, m € M. The odd Chern character of y is defined by the formula

chg(y) = / chg(W). (59)
51

For a finite-dimensional representation M of S!, let yj be its character. Then ¢ — xm(g) - ¢ makes QOdd(Ysl,(C)/Imd a
R(S1)-module.

The following proposition is the g-equivariant version of the corresponding results in [19, (2.21)] and [17, Proposition
2.24].

Proposition 4.1. If g € ST\ A, we have the exact sequence of R(S')-modules,

KL () 25 @0 (yS' ) /imd —% RO(Y) -5 KO, (V) — 0, (60)
where
a(¢@) =[0,¢], T(E ¢D=I[E]. (61)

Let .:YS' — Y be the obvious embedding. Let

1
KL (i) = KA (Y )i, E—E|

yst

~ . 700 70,y St
KR (V)i — K2V )i, (E.¢) = (Elys1,9),

be the induced homomorphisms.
Since localization preserves exact sequences [2, Proposition 3.3], from Proposition 4.1, we have the commutative diagram
of exact sequences of R(Sl),(g)—modules,

ch 1 =
K¢, (Y),(g)*%(szodd(ys ,(C)/Imd) — L= KAV — K2, (V)1 ——0 (63)

1(g)
z*l ldl i*l L*L

h ~
KL (V) —2 (204(yS!, ©)/im d)l( - ROYS")ig) — = KO, (Y5 1) —0.
g
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Using localization in topological K-theory [4, Theorem 1.1], ¢* is an isomorphism on K;l (Y)1(g and Kg] (Y)1(g)- By the
five lemma, {* in (62) is an isomorphism.

Thus we have the following localization theorem, which is a differential K-theory version of the classical localization
theorem in topological K-theory [4, Theorem 1.1] (cf. also [17, Theorem 3.27]).

Proposition 4.2 (Localization theorem). For g € S'\ A, the restriction map * : Rg(Y)I(g) — jgg(ysl )i(g) in(62)isa R(S1) g -module
isomorphism.

For g e ST, set Qg :={P(g)/Q(g) € C: P, Q € Z[x], Q(g) #0} c C.
For any equivariant geometric triple E, ¢ € Q°44(Y& C)/Imd, x € R(S!) such that x(g) #0, put

Fr(Eo)/x)=—x(@" /ng(vfy, VHAd+ x(& 'iig(TY, L E). (64)
Ye
By the variation formula for equivariant n-invariants, f;* defines a push-forward map E* :Kg(Y) 1(g) = C/Qg. Note that,

for g =e, the family version of (64) is [19, Definition 3.12]. In [24, Proposition 4.3], K6hler-Roessler defined an arithmetic
K-theory version of (64).

From the fact that f/y;* : RE(YSI)I(g) — C/Qy is well-defined and (47), for any M, N’ e N and N > N’ >N, g€
ST\A, we have Py v (g) € Q.

The following result shows that localization commutes with the push-forward map in differential K-theory.

Theorem 4.3. For g € S! \ A, the following diagram commutes,

[A,1(N*),o]_1uz*

~ 1 ~,
RO(YS) 1) R(Y)ig) (65)

C/Qq.

Proof. Let p be an equivariant geometric triple on YS'. Then the equivariant version of the Atiyah-Hirzebruch direct image
of p (cf. [27, §3.3]) is the difference of two equivariant geometric triples &4 —&_ on Y and

Eilyst =AY (N QUBF, §-|yq =AM NI @ pUSF. (66)

For g € ST\ A, the map

[, @1/ X = [4. chg(A"(N*)) A ]/ x — [£=, chg(A®Y(N*) A o]/, (67)
defines a direct image map

[ Rg(ysl)[(g) — Eg(Y)I(g) (68)
and

ol = [A_l(N*), 0] U RV g — ROV )ie). (69)

By Proposition 4.2 and by (69), i, is an isomorphism.

For any g € ST\ A, by using the embedding formula of the equivariant n-invariant [27, Corollary 3.9], which extends the
Bismut-Zhang embedding formula [16, Theorem 2.2] to the equivariant case, from (64) and (67), we have the commutative
diagram:

-~ 1 A* -~
Ko(YS )i . K(Y)ig) (70)
ﬁ %
C/Qq.

Then (65) follows from (69) and (70). O
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In particular, from (64) and (65), for any /' € N, A > Ny with Ny in (42), we have

—_ —_— _1
Qu(8) = Fro(LE.0) = fyor o[ A1(N). 0] UT*(IE. 0D € Q. (71)

By Theorem 1.1, for g € ST\ A, Ko € iR = Lie(S1), the Lie algebra of S!, there exists g > 0 such that for |t| < 8, Q nr(getK0)
is real analytic in t. Then combining (71), we know that Q is a rational function on each connected component of S\ A
with integral coefficients. Using Theorem 1.1 for g € A, we know that the two rational functions Q ar, defined on two sides
of g € A, are the same rational function. The argument for Ps A is the same.

The proof of Theorem 3.3 is completed.

Remark 4.4. Eqs. (49) and (65) could be viewed as an analogue of Kohler-Roessler’s fixed-point formula of Lefschetz type
in equivariant arithmetic K-theory (cf. [24], [25]).
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